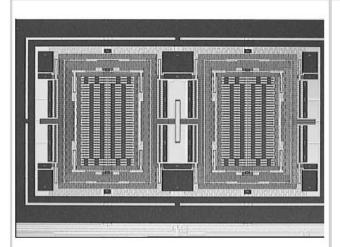
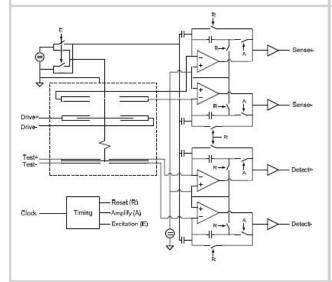
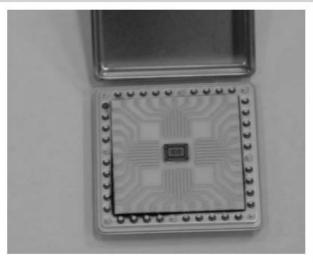
poly-SiGe を用いた CMOS IC 上の MEMS ジャイロ

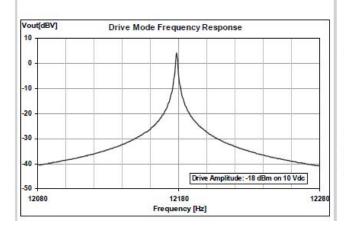
ISSCC 2005 / SESSION 4 / TD: MIXED-DOMAIN SYSTEMS


4.7 Processing of MEMS Gyroscopes on Top of CMOS ICs


A. Witvrouw¹, A. Mehta¹, A. Verbist¹, B. Du Bois¹, S. Van Aerde²,


- J. Ramos-Martos³, J. Ceballos³, A. Ragel³, J. M. Mora³, M.A. Lagos³, A. Arias³
- J. M. Hinojosa³, J. Spengler⁴, C. Leinenbach⁵, T. Fuchs⁵, S. Kronmüller⁵
- ¹IMEC, Leuven, Belgium, ²ASM, Leuven, Belgium, ³IMSE-CNM, Sevilla, Spain,
- ⁴Philips, Böblingen, Germany, ⁵Bosch, Gerlingen-Schillerhöhe, Germany




Exhibit #2: First poly-SiGe above-CMOS integrated gyroscope. The CMOS technology used is a standard 0.35 μm technology with 5 interconnect levels.

